The Strong Isometric Dimension of Graphs of Diameter Two
نویسنده
چکیده
The strong isometric dimension idim(G) of a graph G is the least number k such that G can be isometrically embedded into the strong product of k paths. The problem of determining idim(G) for graphs of diameter two is reduced to a covering problem of the complement of G with complete bipartite graphs. As an example it is shown that idim(P ) = 5, where P is the Petersen graph.
منابع مشابه
On induced and isometric embeddings of graphs into the strong product of paths
The strong isometric dimension and the adjacent isometric dimension of graphs are compared. The concepts are equivalent for graphs of diameter two in which case the problem of determining these dimensions can be reduced to a covering problem with complete bipartite graphs. Using this approach several exact strong and adjacent dimensions are computed (for instance of the Petersen graph) and a po...
متن کاملThe strong isometric dimension of finite reflexive graphs
The strong isometric dimension of a reflexive graph is related to its injective hull: both deal with embedding reflexive graphs in the strong product of paths. We give several upper and lower bounds for the strong isometric dimension of general graphs; the exact strong isometric dimension for cycles and hypercubes; and the isometric dimension for trees is found to within a factor of two.
متن کاملStrong Isometric Dimension, Biclique Coverings, and Sperner's Theorem
The strong isometric dimension of a graphG is the least number k such that G isometrically embeds into the strong product of k paths. Using Sperner’s Theorem, the strong isometric dimension of the Hamming graphs K2 Kn is determined.
متن کاملOn the strong metric dimension of corona product graphs and join graphs
Let G be a connected graph. A vertex w strongly resolves a pair u, v of vertices of G if there exists some shortest u− w path containing v or some shortest v − w path containing u. A set W of vertices is a strong resolving set for G if every pair of vertices of G is strongly resolved by some vertex of W . The smallest cardinality of a strong resolving set for G is called the strong metric dimen...
متن کاملOn two-dimensional Cayley graphs
A subset W of the vertices of a graph G is a resolving set for G when for each pair of distinct vertices u,v in V (G) there exists w in W such that d(u,w)≠d(v,w). The cardinality of a minimum resolving set for G is the metric dimension of G. This concept has applications in many diverse areas including network discovery, robot navigation, image processing, combinatorial search and optimization....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003